10,530 research outputs found

    The jets of the Vela pulsar

    Full text link
    Chandra observations of the Vela pulsar-wind nebula (PWN) have revealed a jet in the direction of the pulsar's proper motion, and a counter-jet in the opposite direction, embedded in diffuse nebular emission. The jet consists of a bright, 8''-long inner jet, between the pulsar and the outer arc, and a dim, curved outer jet that extends up to 100'' in approximately the same direction. From the analysis of thirteen Chandra observations spread over about 2.5 years we found that this outer jet shows particularly strong variability, changing its shape and brightness. We observed bright blobs in the outer jet moving away from the pulsar with apparent speeds (0.3-0.6)c and fading on time-scales of days to weeks. The spectrum of the outer jet fits a power-law model with a photon index of 1.3\pm0.1. The X-ray emission of the outer jet can be interpreted as synchrotron radiation of ultrarelativistic electrons/positrons. This interpretation allows one to estimate the magnetic field, ~100 microGauss, maximum energy of X-ray emitting electrons, ~2\times 10^{14} eV, and energy injection rate, ~8\times 10^{33} erg/s, for the outer jet. In the summed PWN image we see a dim, 2'-long outer counter-jet, which also shows a power-law spectrum with photon ined of 1.2-1.5. Southwest of the jet/counter-jet an extended region of diffuse emission is seen. Relativistic particles responsible for this radiation are apparently supplied by the outer jet.Comment: 4 pages, including 1 figure, accepted for publication in New Astronomy Reviews; proceedings of the conference "The Physics of Relativistic Jets in the CHANDRA and XMM Era", 23-27 September 2002, Bologna. The full resolution versions of the images shown in the fugure are avaliable at http://www.astro.psu.edu/users/green/vela_jet_proc/vela_jet_proc.htm

    Thermal Radiation from Neutron Stars: Chandra Results

    Full text link
    The outstanding capabilities of the Chandra X-ray observatory have greatly increased our potential to observe and analyze thermal radiation from the surfaces of neutron stars (NSs). Such observations allow one to measure the surface temperatures and confront them with the predictions of the NS cooling models. Detection of gravitationally redshifted spectral lines can yield the NS mass-to-radius ratio. In rare cases when the distance is known, one can measure the NS radius, which is particularly important to constrain the equation of state of the superdense matter in the NS interiors. Finally, one can infer the chemical composition of the NS surface layers, which provides information about formation of NSs and their interaction with the environment. We overview the recent Chandra results on the thermal radiation from various types of NSs -- active pulsars, young radio-quiet neutron stars in supernova remnants, old radio-silent ``dim'' neutron stars -- and discuss their implications.Comment: URL changed for Figures 1, 12 and 18: ftp://ftp.xray.mpe.mpg.de/people/zavli
    • …
    corecore